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STOCHASTIC FIELD THEORY FOR TRANSPORT STATISTICS IN

DIFFUSIVE SYSTEMS

EUGENE V. SUKHORUKOV, ANDREW N. JORDAN, SEBASTIAN PILGRAM
Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland

We present a field theory for the statistics of charge and current fluctuations in diffusive

systems. The cumulant generating function is given by the saddle-point solution for the

action of this field theory. The action depends on two parameters only: the local diffusion

and noise coefficients, which naturally leads to the universality of the transport statistics for a

wide class of multi-dimensional diffusive models. Our theory can be applied to semi-classical

mesoscopic systems, as well as beyond mesoscopic physics.

1 Introduction

In this short paper, we present the essential part of our theory1 for the statistics of current and
density fluctuations in non-equilibrium diffusive systems. The theory is based on the stochastic
path integral approach to the statistics of fluctuations in networks,2 and represents an alternative
to quantum methods3,4 for the evaluation of the full counting statistics (FCS) of the transmitted

charge, as well as to classical cascade correction method5 for the evaluation of current cumulants.
The building blocks of our theory are a separation of the time scales (sources of noise

are Markovian) and a saddle-point approximation of the resulting functional integral. The
separation of variables into fast currents and slow varying generalized charges suggests the
network description of a system introduced in Sec. 2. In Sec. 3 we consider a large number of
nodes and derive the continuum limit for the stochastic path integral, which turns out to be
a stochastic field theory with an action being a function of only two quantities, the diffusion
D and noise F functionals of the charge density ρ. This naturally leads to the universality of
the FCS not only for the mesoscopic diffusive conductor [see Eq. (22)], but for a whole class of
multi-dimensional diffusive models (see also Ref. [1] for details).

We would like to stress that due to its essentially classical construction, our stochastic
field theory is not limited to mesoscopic physics,6 but can also be applied to reaction-diffusion
systems,7 symmetric exclusion processes,8 and many other areas of classical stochastic processes.9

2 Stochastic Path Integral for a Network

Consider a network with the state of each node α described by one charge Qα (Q is the charge
vector describing the charge state of the network). The node’s state may be changed by trans-
port: flow of charges between nodes takes place via the connectors carrying currents Iαβ from
node α to node β. The rate of change of these charges Qα is given by

Q̇α =
∑

β

Iαβ , Pαβ(Iαβ) =

∫

dλαβ

2π
exp{−itIαβλαβ + tHαβ(λαβ)} , (1)

where Pαβ is the probability distribution of the fast current between nodes α and β, and Hαβ

is the current cumulant generating function. The fact that Pαβ also depends on the charges Q

is one source of the difficulty of the problem.
Assuming that the generators Hαβ of the fluctuating currents Iαβ are known, we seek an

evolution of the probability distribution Γ(Q, t) of the set of charges Q for a given initial con-
dition Γ(Q, 0). In other words, one has to find the conditional probability (which we refer to as
the evolution operator) U(Q,Q′, t) such that

Γ(Q, t) =

∫

dQ′ U(Q,Q′, t)Γ(Q′, 0) . (2)



We assume that there is a separation of time scales, τ0 ≪ τC , between the correlation time of
current fluctuations, τ0, and the slow relaxation time of charges in the nodes, τC . In Ref. [2] we
have used the separation of time scales to derive a stochastic path integral representation for
the evolution operator,

U(Qf ,Qi, t) =

∫

DQDΛ exp{S(Q,Λ)}, (3)

S(Q,Λ) =

∫ t

0

dt′[−iΛ · Q̇ + (1/2)
∑

αβ

Hαβ(Q, λα − λβ)]. (4)

The variables λα are auxiliary variables for every node that impose charge conservation in the
network.

3 Continuum Limit

From the stochastic network, it is straightforward to go to spatially continuous systems as the
spacing between the nodes is taken to zero. Consider a series of identical, equidistant nodes
separated by a distance ∆z. This nodal chain could represent a chain of chaotic cavities, Fig.
1, in a mesoscopic context.10,11 The sum over α and β becomes a sum over each node in space
connected to its neighbors. The action for this arrangement is

S =

∫ t

0

dt′
∑

α

{−λαQ̇α + H(Qα, Qα−1;λα − λα−1)} , (5)

where for simplicity we have chosen real counting variables, iλα → λα. The only constraint
made on H is that probability is conserved, H(λα − λα−1) = 0 for λα = λα−1. We now derive
a lattice field theory by formally expanding H in λα − λα−1 and Qα − Qα−1. Only differences
of the counting variables will appear in the series expansion, while we must keep the full Q
dependence of the Hamiltonian. If there are N ≫ 1 nodes in the lattice, for fixed boundary
conditions the difference between adjacent variables, λα − λα−1 and Qα −Qα−1 will be of order
1/N , and therefore provides a good expansion parameter. The expansion of the Hamiltonian
(5) to second order in the difference variables gives

H =
∂H

∂λα
(λα − λα−1) +

1

2

∂2H

∂λ2
α

(λα − λα−1)
2 +

∂2H

∂Qα∂λα
(Qα − Qα−1)(λα − λα−1) , (6)

where the expansion coefficients are evaluated at λα = λα−1 and Qα = Qα−1 and are functions
of Qα−1. Terms involving only differences of Qα −Qα−1 are zero because H(λα − λα−1) = 0 for
λα = λα−1. All terms in Eq. (6) need explanation. First, the expression ∂H/∂λα is the local
current at zero bias (because the charges in adjacent nodes are equal) which will usually be zero.
There may be exceptional circumstances where this term should be kept, but we do not consider
them here. The term ∂2H/∂Qα∂λα = −G(Qα−1) is the linear response of the current to a

charge difference. Hence, G is the generalized conductance12 of the connector between nodes α
and α − 1. ∂2H/∂λ2

α = C(Qα−1) is the current noise through the same connector because H is
the generator of current cumulants.

We are now in a position to take the continuum limit by replacing the node index α with a
coordinate z, introducing the fields Q(z), λ(z), and making the expansions

λα − λα−1→λ′∆z + (1/2)λ′′(∆z)2 + O(∆z)3, (7)

Qα − Qα−1→Q′∆z + (1/2)Q′′(∆z)2 + O(∆z)3. (8)

The action may now be written in terms of intensive fields by scaling away ∆z,

H → h(ρ, λ)∆z, Qα → ρ(z)∆z, Gα(∆z)2 → D(ρ), Cα∆z → F (ρ) , (9)
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Figure 1: A one dimensional lattice of nodes connected on both ends to reservoirs. This situation could represent

a series of mesoscopic chaotic cavities connected by point contacts.

and taking the limit
∑

α H →
∫

dzh(ρ, λ). One may check that expanding the Hamiltonian
to higher than second order in ∆z will result in terms suppressed by powers of ∆z/L and
consequently vanish as ∆z → 0.

These considerations leave the one dimensional action as

S = −

∫ t

0

dt′
∫ L

0

dz

[

λρ̇ + D ρ′λ′ −
1

2
F (λ′)2

]

. (10)

Here D is the local diffusion constant and F is the local noise density which are discussed in detail
below. It is very important that these two functionals D,F are all that is needed to calculate
current statistics. Classical field equations may be obtained by taking functional derivatives of
the action with respect to the charge and counting fields:

λ̇ = −
1

2

δF

δρ
(λ′)2 − Dλ′′, ρ̇ = [−Fλ′ + Dρ′]′ . (11)

We have to solve these coupled differential equations subject to the boundary conditions ρ(t, 0) =
ρL(t), ρ(t, L) = ρR(t), λ(t, 0) = λL(t), and λ(t, L) = λR(t). Functions λL(t) and λR(t) are the
counting variables of the absorbed charges at the left and right end of the system. Once Eqs. (11)
are solved, the solutions ρ(z, t) and λ(z, t) should be substituted back into the action (10) and
integrated over time and space. The resulting function, Ssp[ρL(t), ρR(t), λL(t), λR(t), t, L] is
the generating function for time-dependent cumulants of the current distribution. Often, the
relevant experimental quantities are the stationary cumulants. These are given by neglecting the
time dependence, finding static solutions, ρ̇ = λ̇ = 0, and imposing static boundary conditions.
We can also introduce sources

∫

dtdz χ(z, t)ρ(z, t) and calculate density correlation functions.
To justify the saddle-point approximation, it is useful to define dimensionless variables. The

boundary conditions ρL, and ρR provide the charge density scale ρ0 in the problem, so we define
ρ(z) = ρ0f(z), where f ∼ 1 is an occupation. We furthermore rescale z → Lz, and t → τDt,
where τD = L2/D is the diffusion time, thus obtaining

S = −Lρ0

∫ t

0

dt′
∫

1

0

dz′
[

λḟ + f ′λ′ −
F

2Dρ0

(λ′)2
]

. (12)

We assume that the combination F/Dρ0 is of order 1. From Eq. (12), the dimensionless large
parameter is γ = ρ0L ≫ 1, i.e. the number of transporting charge carriers. The saddle-point
contribution is of order γt/τD, while the fluctuation contribution is of order t/τD.

Repeating these steps in multiple dimensions yields the action

S = −

∫ t

0

dt′
∫

Ω

dr [λρ̇ + ∇λ D̂∇ρ − (1/2)∇λ F̂ ∇λ ] , (13)

where F̂ and D̂ are general matrix functions of the density ρ and coordinate r which should be
interpreted as noise and diffusion matrices.



As in any field theory, symmetries of the action play an important role because they lead
to conserved quantities. We first note that the Hamiltonian h(ρ,∇ρ,∇λ) is a functional of ∇λ
alone with no λ dependence. This symmetry is analogous to gauge invariance, and leads to the
equation of motion

ρ̇ + ∇ · j = 0 , j = −D̂∇ρ + F̂∇λ , (14)

which can be interpreted as conservation of the conditional current density j. The next sym-
metry is related to the invariance under a shift in the space and time coordinates {δr, δt}.
This symmetry leads to equations analogous to the conservation of the local energy/momentum

tensor.13 For the stationary limit (where ρ̇ and λ̇ vanish) and for symmetric diffusion and noise
tensors, the conservation law is relativly simple and is given by

∑

m

∇mTmn = 0 , Tmn = jm(∇nλ) − (∇nρ) (D∇λ)m − h δmn . (15)

For the special case of a one dimensional geometry, the Hamiltonian itself is the conserved
quantity (see Sec. 4).

4 FCS of Diffusive Systems

We first consider the general 1D field theory with the action (10), and then demonstrating
our solution for the FCS of the mesoscopic diffusive wire specifically. In the stationary limit,
ρ̇ = λ̇ = 0, the action can be written as

S = t

L
∫

0

dz

[

−Dρ′λ′ +
1

2
F (λ′)2

]

. (16)

The stationary saddle-point equations

(Fλ′ − Dρ′)′ = 0, 2Dλ′′ +
δF

δρ
(λ′)2 = 0, (17)

can be partially integrated leading to the following two equations:

Dρ′ = ±
√

I2 − 2HF, (18)

λ′ = 2H/(I − Dρ′). (19)

The two integration constants I = −Dρ′ + Fλ′ and H = −Dρ′λ′ + (F/2)(λ′)2 are the conserved
(conditional) current and the Hamiltonian density, respectively. These conservation laws fol-
low from the symmetries of our 1D field theory [see Eqs. (14) and (15) and the surrounding
discussion]. Thus we obtain the following result for the action (16),

S = tLH. (20)

The Eqs. (18-20) represent the formal solution of the FCS problem for 1D diffusion models
with D(ρ) and F (ρ) being arbitrary functions of ρ. The following procedure has to be done
in order to obtain the cumulant generating function S(χ) of the transmitted charge: (i) The
differential equation (18) has to be solved for ρ(z) with the boundary conditions ρ(z)|z=0 = ρL

and ρ(z)|z=L = ρR. The constant I should be expressed through the constants ρL, ρR, and
H. (ii) Next, ρ(z) is substituted into Eq. (19) which is integrated to obtain λ(z) with the
boundary conditions λL = 0 and λR = χ. (iii) Finally, using the solution for λ(z) the constant
H is expressed in terms of ρL, ρR, χ, and substituted into the action (20). We note that by
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Figure 2: The logarithm of the distribution of the current through a mesoscopic diffusive wire as a function of

the ratio I/I0 of the current to its average value I0. The distribution is strongly asymmetric, with the Gaussian

tale at I ≫ I0. Inset: The electron occupation f inside the wire as a function of the rescaled coordinate z, under

the condition that the average current I = I0, no current I = 0, and large current I = 5I0 has been measured.

expressing H and χ in terms of I, we may also formally obtain the logarithm of the current
distribution,

ln P (I) = S(I) − tIχ(I), I → I, (21)

as a result of the stationary phase approximation for the integral P (I) =
∫

dχ exp[S(χ) − tIχ]
and because ∂H/∂χ = I/L.

As an example of the 1D field theory, we consider the FCS of the electron charge transmitted
through the mesoscopic diffusive wire. When the potential difference ∆µ = µL − µR > 0 is
applied to the wire, the electrons flow from the left lead to the right lead with the average
current I0 = e−1G∆µ, where G is the conductance of the wire. The elastic electron scattering
causes non-equilibrium fluctuations of the current. At zero temperature, and for noninteracting
electrons (the cold electron regime), the FCS of the transmitted charge has been studied in
Refs. [14] and [4] using quantum-mechanical methods with the following result for the generating
function of cumulants of the dimensionless charge Q/e:

S(χ) = (tI0/e) arcsinh2

[

√

exp(χ) − 1

]

. (22)

Here we will rederive this result using our classical method.

On the classical level, the electrons in the diffusive wire are described by the distribution
function f(z). Under transport conditions (and at zero temperature), this distribution f(z)
varies from fL = 1 in the left lead to fR = 0 in the right lead. Taking the continuum limit for
the series of mesoscopic cavities,11 we arrive at the action (16) in the form

S = (tI0/e)

1/2
∫

−1/2

dz[−f ′λ′ + f(1 − f)(λ′)2], (23)

where we have rescaled the coordinate z, ρ(z) has been replaced with the distribution f(z), and
where D = 1, and F = 2f(1−f) up to the overall constant I0/e. This form of F , originating from
the Pauli blocking factors, is quite general for fermionic systems. Applying now the procedure
described in the beginning of this section, we solve the saddle-point equations and find the fields



f and λ,

f(z, χ) =
1

2

[

1 −
sinh(2αz)

sinh α

]

, (24)

λ(z, χ) = 2 arctanh [tanh(α/2) tanh(αz)] , (25)

α = arcsinh

[

√

exp(χ) − 1

]

, (26)

where H = α2, so that according to the Eq. (20) we immediately obtain the result (22).
The logarithm of the current distribution ln[P (I)] can be now found from the equation (21).

We obtain the following result:

ln[P (I)] = −(tI0/e)[2α coth α ln(cosh α) − α2], (27)

where α has to be expressed in terms of I = I/I0 by solving the equation

α coth α = I/I0. (28)

The distribution P (I) is strongly asymmetric around the average current I = I0 (see Fig. 2).
In Ref. [1] we have proven the universality of the FCS of the transmitted charge for a two-

terminal multi-dimensional generalized wire with the noise tensor F (ρ)T̂ , being an arbitrary
function of the charge density ρ, and with the constant diffusion tensor DT̂ . The universality
means that the FCS depends neither on the shape of the conductor, nor on its dimensionality.
The FCS of a mesoscopic wire given by Eq. (22) is a particular example of universal FCS. In
the more general case, when D is a function of ρ, the FCS depends on the geometry through
only one parameter, the geometrical conductance.
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